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A comparison is made between the approaches of Nelson and of Lewis and 
Davies to quantum probability, using calculations made on the harmonic 
oscillator. Calculation of the joint distribution of position shows an expected 
difference in the approaches. The time the particle takes to hit an absorbing 
counter put in the system is calculated to first order, in both theories, and 
the results again differ. 
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1. I N T R O D U C T I O N  

Nelson (1.~) suggested that  the Schrrdinger  theory  o f  quan tum mechanics is 
equivalent to one in which it is assumed that  every particle o f  mass m is 
subject to a Brownian mot ion  whose variance depends inversely on m. This 
equivalence depends on the belief tha t  in qua n t um mechanics it is impossible 
to make repeated measurements  o f  noncommut ing  observables; in particular, 
one cannot  measure the posit ion o f  a particle at two different times, and so 
one cannot  calculate the covariance funct ion o f  position. However,  Davies 
and Lewis (3) have suggested an extension of  the usual theory  o f  quan tum 
mechanics in which such measurements  are theoretically possible. I t  is o f  
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interest to see how Nelson's theory compares with this extension of quantum 
mechanics; to do this, we use one of the simplest quantum systems, a one- 
dimensional quantum oscillator in its ground state. This is represented in 
Nelson's theory by a particle whose position is described by the Ornstein- 
Uhlenbeck process with initial Gaussian distribution. 

We first calculate the joint distribution of the position of the particle 
at varying times, but using Gaussian instruments rather than the standard 
type of position-measuring instruments. In the latter, if the apparatus is set to 
measure whether the particle is at x0, then it has probability one of recording 
the event if the particle is actually at x0, and probability zero if the particle 
is not at x0 �9 A Gaussian instrument, of width ~, measuring the same event 
has probability (2~r~2)-1/2 exp[--(x -- x0)2/2~ ~] dx of recording the event if 
the particle is in the region (x, x + dx). As a ~ 0, these instruments, 
suggested first in Ref. 4 and generalized in Ref. 5, tend to standard measuring 
instruments. Such Gaussian instruments are good approximations of real 
measurements, since it is not possible to measure exactly a point in a 
continuum. 

In Section 3, a small counter is introduced into the system and the counter 
records the time at which the particle hits it and is absorbed. It is theoretically 
possible to calculate the hitting time probabilities in both theories, but for 
ease of wroking, it is assumed that the absorption rate of the counter is 
small, of  order e. This represents a counter where there is a strong possibility 
of the particle passing right through the counter without being absorbed. 
In both the calculations of joint distributions and hitting times, the two 
approaches give different results. This is somewhat surprising in the case 
of  hitting times, as there appears to be only one measurement involved, 
which would normally imply agreement of the two theories. 

All these calculations can be made for a wider class of quantum systems 
and the results of the two theories compared. The results indicate that 
Nelson's theory does not agree with that of Lewis and Davies, and display 
how unlike classical probability is the probability of quantum theory. 

2. J O I N T  D I S T R I B U T I O N S  OF P O S I T I O N  

Consider a quantum particle of mass m = 1 performing a simple 
harmonic motion in one dimension under a force --w2x, with initial state 

(1) ~ ( x ,  O) = (w/hTr) 1/4 exp(--wx2/2h) 

The development of the system is given by SchrSdinger's equation 

~71 h 2 ~ w~x 2 
ih ~ = H ~  --  2 ~x ~ + T 7t (2) 
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so that at time t, 7t(x, t) = 7t(x, 0) e -~/2 .  Thus the probability density of 
the position of the particle at time t, ] ~(x,  t)[ ~, is Gaussian with mean zero 
and variance h/2w. 

In Nelson's theory the position of a particle is given by the Markov 
process x(t) which satisfies the stochastic differential equation 

dx(t) = b[x(t), t] dt + dw~ (3) 

where w, is the Wiener process with diffusion constant h/2. The initial 
distribution and b(x, t) are obtained from the quantum system to be described; 
the initial distribution is defined by p(x, 0) = ] N(x, 0)J 2 and if N(x, t) = 
exp[R(x, t) + iS(x, t)], where R and S are real functions, then 

b(x, t) = h[~R/Ox) %- (?S/?x)] (4) 

In this case b(x, t) = --wx, so the process must satisfy the relation 

dx(t) = --wx(t) dt + dw, (5) 

and have an initial Gaussian distribution with mean zero and variance 
h/2w. Such a solution is the Ornstein-Uhlenbeck process, which is a stationary 
Gaussian Markov process with mean zero and covariance 

Exp[X(t) X(t + ~r)] = (h/2w) exp(--w ] ~-]). 

Measuring position with a Gaussian instrument of width cr, Nelson's 
theory gives 

p(x, t, e) -= probability density that Gaussian instrument placed at 

x records particle at time t 
~ 1 ~1/2 +co (X ~y)2  
\ 2r ~ / ~]~o exp [ ] P(y, t )dy  (6) 

where P (y ,  t) is the probability density of the Ornstein-Uhlenbeck process, 
i.e., (w/hzc)l/2 exp(--wx2/h). Therefore 

p(x, t, e) = {rr[2~r ~ + (h/w)l}-l/2 exp[--wx2/(2we ~ %- h)] (7) 

Using the terminology of Ref. 3 to describe the Davies-Lewis theory, the 
state space (V, ~-) is given by V = ~J'~(L2(R)), the ordered Banach space of  
self-adjoint trace class operators on L2(R), and T is the trace. As described 
in Refs. 4 and 5, a Gaussian position-measuring instrument is described by 
a map #~ : V • B(R) ~ V, where B(R) are the Borel sets of R. The map 
#~ is defined by 

~"(M) p = ( ~ (a  -- Q) pc~(a - Q)* da, M ~ B(R), p ~ V (8) 
J M  
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where, if 

then 

Q = hEO(dh) 

c~~ -- Q) = (2zra~)-z/4 J-o~ {exp[ - (a  ,~)2/4~]} EO(dh) (9) 

Thus if we wish to calculate the probability density in this theory, we consider 
the Borel set [Xo, Xo q- dx], so with abuse of notation, 

g~(Xo , p) dx  -= d~([x0, Xo + dx]) p = c~(Xo --  Q) pa~(Xo - Q)* dx  

The probability density that the instrument located at xo records the particle 
at time t then is 

PLD(X, t, (X) dx = (% d~~ x o -1- dx])(UtpUt*)) / (% p)  (10) 

where Ut = e -~m/h and p = P~ = [ 0)(0 I, the projection operator onto the 
subspace spanned by the ground state of the harmonic oscillator. Since 
for Q the position observable ( E ~  = XE~,-o~)(x)f(x), 

PLD(X, t, ~) = tr[~(x0 - -  Q) U(t)P~,U(t)* c~(Xo - Q)*] 

= {zr[Z~r 2 § (h/w)]} -1/2 exp[--wx2/(2wcr 2 -k h)] (11) 

The two theories agree in calculating the probability of the position of the 
particle at one given time. 

To calculate the joint densities, we measure the position at time tl with 
a Gaussian instrument of width ~r~. Nelson's theory leads to the joint 
density 

PN(X2, t2, ~2 ; XI , t l ,  or1) = (47r3(712(Y22fl/W) 1/2 

~+oo exp[--(x -- xl)2/2cr12] exp(--wx2/h)  dx x 

• p~(x, dy) exp[- - (y  -- x~)~/2cr2 2] (12) 

where p~(x, dy), the transition probability from x to dy in time t of the 
Ornstein-Uhlenbeck process, is 

pt(x, dy) = [w-~rh(1 --  e-2W~)] -1/~ exp[-- w ( y  - -  e-W~x)2/h(1 --  e-2W~)] dy (13) 

Then (12) defines a valid joint density and the marginal distribution 
obtained by integrating over Xl is of course Gaussian with mean zero and 
variance ~ + (h/2w). 
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In the other theory the equivalent probability density is given by 

pLD(Xz , t2 , as ; Xz , t I , 0"1) = <T, ~'~a2(X2 , U~2_tzo~al(x1, Vt lpU~) U~_~z))/<T , p> 

eo 
= ~2 {exp[i(t2 -- tx) w(m - -  gt)]}(4"n'2tr12o'22) -1/2 

• hn(p) hm(p) exp[--(p -- x~)2/2~2 ~] dp 

• hn(q) ho(q) exp[--(q -- xl)2/4c~12] dq 
cr~ 

• f + :  hm(r) ho(r) exp[--(r  -- Xl)2/4cq 2] dr (14) 

where h~ is the nth eigenfunction of the harmonic oscillator. This is not the 
same distribution as (12), as can be see by calculating the marginal distri- 
butionj 'p(x2, t2, ~ ; x~, t l ,  ez) dxz which is Gaussian with mean zero and 
variance ~2 2 + (h/2w) + (h2/4w2crl 2) sin2[(t~ -- tow]. This marginal distri- 
bution is the same as measuring if the particle is anywhere in R at time tx, 
followed by measuring if it is at x2 at t2 �9 This could be done by introducing 
a screen with an infinite hole in it at time t~--surely equivalent to no screen 
at al l--and yet if there were no measurement at time q ,  the distribution 
would be different. This paradox is a consequence of the requirement that 
a measurement of a quantum state immediately changes the state, no matter 
how little information is obtained from the measurement. Thus it is hardly 
surprising that a theory based on classical probability does not incorporate 
such vagaries. 

3. H I T T I N G  T I M E S  

For the second comparison of the two theories, we consider the model 
of a ground-state harmonic oscillator interacting with an absorbing particle 
detector. This particle detector covers a small area E, and when the particle 
hits it the particle is absorbed and the hitting time noted. Such a problem can 
be treated in the Lewis-Davies theory by using the framework of quantum 
stochastic processes.(6) Since there is a change in the number of particles in 
the system--from one to zero-- the state space (V, r) is taken as V = ~(Xr 
where ~ = ,~(L2(R)), the symmetric Fock space built on L2(R). The counter 
is represented by the canonical annihilation operator A ( f ) ,  f being an L ~ 
function with support in E. I f  H i s  the Hamiltonian of the harmonic oscillator 
on L2(R), ~-(H)  is its extension to Fock space. 

A quantum stochastic process, as defined in Ref. 6, is a set of instruments 
#t, indexed by a time parameter t ~ [0, oo), each of which maps the initial 
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state of the system onto the state at time t, dependent upon what has happened 
up to time t. For  these instruments, which measure when the particle hits 
the counter, the sample space X, of d ~ consists of all possible times the hitting 
could occur together with a point z, representing the possibility that no 
hitting has occurred. Thus X~ = {s : s e [0, t]} tJ z. To define such instruments, 
we use the facts proved in Ref. 6, that S,p = g~(z) p, the states conditional 
upon no hitting, form a semigroup, and if S,p =- BtpB~*, then this no hitting 
time development is a perturbation of the usual time development given by 

B, = exp[Y(--ih-iHt) -- 1A*(f) A(f)t] (15) 

For  the other values of Xt we simply use the fact that on hitting the counter, 
the state of the particle changes from p to A(f)  pA(f)* so that 

W*(s) p = B,_sA(f) BspB~*A(f)* B*_~ (16) 

The initial state of the system is p = rg @ cV = P ~ ,  where cF has Fock 
coordinates (0, 7-t(x, 0), 0, 0,...), W defined in Eq. (1). Thus the state 
A(f)  B,pB~*A(f)* has only a component in the first Fock coordinate and 
Bt_8 has no effect on it. Thus (16) can be written as A(f)  B~pB~*A(f)*. 

If  ~ is the random variable denoting the hitting time of the particle, it 
follows from Ref. 6 that the probability of the hitting times is 

P(t <~ ~LD <~ t + dt) = [(r, g'(t) p)/(~', p)] dt + o(dt) 

= [('r, A( f )  B,pe,*A(f)*>/('~, p>] dt + o(dt) (17) 

In most cases this expression is difficult to calculate, so assume the 
detector has a small interaction rate, i.e., there is a strong possibility the 
particle will pass through the detector without triggering it off and being 
absorbed, and so only slightly perturbs the system. Let E be small and let 
the state change on being absorbed from p to cA(f)pA(f)*;  then Bt also 
changes to exp[o~(--ih-lHt)-  �89 A(f) t] .  Substituting in (17) gives 
the new hitting probability, which, to first order in e, is 

P(t <~ ~LD <~ t + dt) 

= E(w/hzr)l/2 IrE [exp(--x2w/h)]f(x)dxl 2dr + o(E)+ o(dt) 

= �9 I(f, ~) l  ~ dt + o(�9 4- o(dt) (18) 

where 7 t is defined in Eq. (1). 
For  Nelson's theory we require the probability that, given the particle 

is at x at time t, it will hit the counter in the interval [t, t + dt]. Let this be 
k(x) dt + o(dt). The quantum state corresponding to a particle being definitely 
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at x is approximately P~,, where T ( y )  = ~(x -- y). If we take BtpB** to be of  
this form and substitute in (17), we are led to the assumption that 
k(x)  = e Tf(x)l ~. This argument cannot be made valid, but we shall take 
this equation as the connection between the two theories and use it to 
calculate the hitting probability in Nelson's model. Following Dynkin, (7) 
if the probability density p(x,  t) of the system without the counter satisfies 
the Fokker-Planck equation 

~p/~t = a*p  (19) 

then if P(x,  t)  is the probability density for the process including the killing 
counter, it satisfies 

~P/~t = G*P --  k(x)  P (20) 

For the Ornstein-Uhlenbeck process of  Section 2, 

a *  = �89 ~) + wx(~/Ox) + w, 

and the hitting probability is given by 

P(t ~ ~N ~ t + at) = (+~ [k(x) dt + o(dt)] P(x,  t) dx (21) 
~ c o  - -  

Since k(x)  = E lf(x)l 2, P(x,  t) must satisfy 

0P h ~ P  0P 
et --  2 ~x 2 -t- wx  ~ + wP --  �9 If(x)] 2 P (22) 

with initial conditions P(x,  O) = [ T (x ,  O)i 2 = (w-17rh)-Z/2 exp(--wx2/h).  
Expanding P in terms of �9 we get, using Eq. (1), 

P(x,  t) = t T ( x ,  0)1211 + �9 t) + o(�9 (23) 

Equations (21) and (23) give 

P(t <~ ~N <~ t + dr) 

= l�9 [exp(--x2w/h) l f (x) l  2 dx I dt + o ( � 9  o(dt) 

= E(I T ?, I.f?) dt + o(e) + o(dt) (24) 

Thus the two theories vary even in first order in E. This is somewhat surprising 
as the theories should agree if only one measurement is made. However, the 
introduction of an absorbing counter is treated differently in quantum 
mechanics and in probability theory and this causes the difference in results. 
I f thedetector  function is changedfromf(x)  to d~(~f(x) for some real function 
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A, then this will change the first order results in the Lewis-Davies theory 
but not in the Nelson case. Such a change in the detector function could be 
thought of  as giving the detector a preference for a particle with a certain 
momentum and so it appears that  in the Lewis-Davies case the detector 
is momentum dependent while in the Nelson case it depends only on the 
position of the particle. 

Since it is feasible that  hitting times could actually be measured for 
some physical systems, it is possible that this work could be extended to give 
results that  could be checked experimentally. 

A C K N O W L E D G M E N T  

I should like to thank Dr. David Williams for many useful discussions. 

R E F E R E N C E S  

1. E. Nelson, Phys. Rev. 150:1079 (1966). 
2. E. Nelson, Dynamical theories of Brownian motion, Princeton Univ. Press, Princeton, 

N. J. (1967). 
3. E. B. Davies and J. T. Lewis, Comm. Math. Phys. 17:239 (1970). 
4. E. B. Davies, d. Funct. Analysis 6:318 (1970). 
5. G. W. Ford and J. T. Lewis, to appear. 
6. E. B. Davies, Comm. Math. Phys. 15:277 (1969). 
7. E. B. Dynkin, Markov processes, Vol. I, Springer-Verlag, Berlin (1965). 


